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Abstract: Baseline health data for species of conservation concern are important for 
understanding threats to the long-term viability of populations. One indication of health is 
physiological stress among individuals. Corticosterone (CORT) is frequently used to quantify 
stress in free-living reptile populations, as high values may be associated with reduced fitness. 
Herein, we describe and validate methods for quantifying blood CORT levels in three-toed 
box turtles (Terrapene mexicana triunguis). We subsequently use this information to evaluate 
stress levels in 2 populations of free-living three-toed box turtles in Missouri, USA. To our 
knowledge, this is the first quantification of CORT levels in the three-toed box turtle. In 2012 
we collected blood samples from 11 three-toed box turtles in human care at the Saint Louis 
Zoological Park (zoo), St. Louis, Missouri for assay validation, and from 2012 to 2016 we 
collected 220 samples from 144 free-living three-toed box turtles at 2 sites, 1 urban and 
1 rural. In the zoo turtles, mean CORT concentration was 0.71 ± 0.10 ng/mL. Following a 
handling experiment, CORT concentration increased to 3.14 ± 0.72 ng/mL (P = 0.011). Mean 
CORT levels between free-living turtles at the urban and rural sites did not differ (urban = 
0.54 ± 0.08 ng/mL, rural = 0.37 ± 0.02 ng/mL, F pr = 0.12). Sex did not influence CORT levels 
(F pr = 0.29). These results suggest that the turtles living in the urban environment did not 
experience chronic elevated glucocorticoid production and supports urban parks as potential 
habitat for box turtles. 
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Human modifications to the earth have 
caused the planet to enter a newly defined 
geological epoch—the Anthropocene—char-
acterized in part by elevated extinction rates 
compared to historic levels (Pimm et al. 1995,  
Crutzen and Stoermer 2000). Chelonians (tor-
toises and turtles) are among the most threat-
ened of vertebrate taxa, with approximately 
half of the >325 species threatened with extinc-
tion (Rhodin et al. 2017). Certain characteristics 
of turtles, such as delayed sexual maturity and 
long generation times (Congdon et al. 1993), 

make them especially vulnerable to anthropo-
genic disturbances (Heppell 1998). Box turtles 
(Terrapene spp.) occur extensively throughout 
the Eastern and Midwestern United States and 
into Mexico (Dodd 2002, Martin et al. 2013). 
Population declines of these species are wide-
spread due to a combination of threats faced by 
many reptiles, including habitat loss and frag-
mentation, unsustainable pet trade harvest, and 
increasing infectious and non-infectious diseas-
es (Budischak et al. 2006, Rivas et al. 2014). 

Stressors are commonly defined as stimuli in 
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an animal’s environment that induce a physi-
ological response (Tokarz and Summers 2011, 
Atkinson et al. 2015). There are predictable 
stressors associated with daily and seasonal 
demands such as feeding, reproduction or mi-
gration, and unpredictable stressors that may 
be life threatening such as predation (Landys 
et al. 2006). Anthropogenic changes often pres-
ent unpredictable and life-threatening events 
that may increase stress in wildlife (McLennan 
et al. 2019). Behavioral, neuroendocrine, bio-
chemical, and physiological changes are used 
to evaluate stress in reptiles (Silvestre 2014). A 
measurable neuroendocrine and physiological 
indicator such as glucocorticoid production can 
help ascertain how an animal is reacting to its 
environment (Wikelski and Cooke 2006). 

In response to stress, vertebrate endocrine 
systems release glucocorticoids (Romero 2004, 
Selman et al. 2012, Silvestre 2014, Taylor et al. 
2014). In reptiles, the main glucocorticoid is 
corticosterone (CORT; Silvestre 2014). Normal 
physiological levels of glucocorticoids are nec-
essary and beneficial for daily functions (Landys  
et al. 2006). Acute glucocorticoid increases in 
response to stressors are also beneficial by fa-
cilitating immediate survival (Baker et al. 2013, 
Atkinson et al. 2015). Additionally, positive 
relationships between CORT and reproduc-
tion have been described in some amphibian 

and reptile species in which moderately in-
creased CORT levels have been found during 
their breeding season (Moore and Jessop 2003). 
However, if elevated glucocorticoid production 
is chronic or severe, it can be potentially detri-
mental in some instances because processes not 
necessary for immediate survival, like repro-
duction, are suppressed (Pride 2005, Landys et 
al. 2006, Refsnider et al. 2015). Chronic stress-
ors may have accumulated costs that contribute 
to physiological dysfunction (Atkinson et al. 
2015). For example, short, repeated exposure 
to exogenous glucocorticoid has been shown 
to reduce immune function in ocellated skinks 
(Chalcides ocellatus; Saad et al. 1987). 

In wildlife, glucocorticoid production has 
been investigated with regard to anthropo-
genic disturbances, including the impact of 
vehicle use on free-living elk (Cervus elaphus;  
Millspaugh et al. 2001) and the impact of tour-
ism on Galapagos marine iguanas (Amblyrhyn-
chus cristatus; Romero and Wikelski 2002). De-
termining temporal patterns of glucocorticoid 
levels of animals living in human-modified 
landscapes may help to advance species conser-
vation efforts and to inform management strat-
egies (Wikelski and Cooke 2006, Romano et al. 
2010). There is a paucity of data for turtles, in-
cluding a native Missouri box turtle, the three-
toed box turtle (T. mexicana triunguis; Missouri 

Figure 1. Three-toed box turtle (Terrapene mexicana triunguis) from cranial and dorsal views 
(photos courtesy of B. Lamczyk). 
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Department of Conservation 2008, Rhodin et al. 
2017; Figure 1).

The goal of our study was to examine CORT 
production of three-toed box turtles living in 
2 habitats, 1 rural and 1 urban, with varied 
levels of human impact. First, we validated a 
methodology for quantifying CORT in three-
toed box turtle plasma, and then we used this 
technique to examine CORT production of the 
free-living three-toed box turtle populations. 
We hypothesized that box turtles living in the 
more disturbed urban environment would 
have higher levels of CORT compared to those 
in a less human-disturbed, rural environment. 

Study area
Free-living three-toed box turtles were sam-

pled at two sites. Forest Park (FP; urban) is a 
556-ha park in St. Louis, Missouri (38°63’N,
90°28’W) that is a mosaic of land use, includ-
ing recreational areas with fragmented forest
and forest edge habitats suitable for native box

turtles (Figure 1). Tyson Research Center (TRC; 
rural; 38°52’N, 90°56’W) is an 809-ha contigu-
ous oak-hickory (Quercus spp., Carya spp.) for-
est and biological research station, in Eureka, 
Missouri, 20 km southwest of FP (Figure 2). 
This Ozark region of Missouri contains some 
of the largest and least impacted forests in the 
Midwest and may represent a refuge for oak-
hickory forest biodiversity, including terrestrial 
turtles (Brookshire and Hauser 1993, Semlitsch 
et al. 2014). 

Methods
Sample collection

We collected most of the blood samples from 
free-living three-toed box turtles from May to 
June, 2012–2016, with few samples collected in 
other months. Once encountered, we manually 
restrained the turtle and collected blood within 
3 minutes. This period was based on previously 
published studies that reported CORT levels 
in chelonians can increase within 3 minutes of 

Figure 2. Reference map of the greater St. Louis, Missouri, USA area with Tyson Research Center highlighted 
(left) and Forest Park highlighted (right). Missouri three-toed box turtles (Terrapene mexicana triunguis) can be 
found within the fragmented ranges outlined within Forest Park bordered by streets and city buildings in addi-
tion to busy public hiking trails. Tyson Research Center has only 1 road crossing the property with no public 
access, and box turtles can be found across the entire area.
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handling (Mader 2006, Zachariah et al. 2009). 
We collected blood (<1% of body weight) from 
the subcarapacial sinus using a 3-ml syringe 
and heparinized, 25-g needle (Jacobson 1993, 
Hernandez-Divers and Cooper 2006). We placed 
the blood samples in lithium heparin-coated 
microtainer tubes (Becton Dickinson, Franklin 
Lakes, New Jersey, USA) and stored them on 
ice for up to 4 hours in the field. Each turtle was 
marked for identification with marginal scute 
notches if recaptured, as previously described 
by Palmer et al. (2016). 

We centrifuged whole blood samples for 10 
minutes at 12,000 rpm and stored 100 µL of 
plasma in Eppendorf tubes (Eppendorf AG, 
Hamburg, Germany) at -80°C until extraction 
and assay. All turtle handling procedures were 
approved by the Saint Louis Zoo Institutional 
Animal Care and Use Committee (IACUC #14-
06), and handling of turtles in FP and TRC 
was permitted by the Missouri Department 
of Conservation. We used only samples from 
adult (carapace length >110 mm [Schwartz and 
Schwartz 1974]), sexed three-toed box turtles in 
the study.

Plasma hormone analysis
All CORT testing was performed at the Saint 

Louis Zoo Endocrinology Laboratory. We 
extracted plasma samples with absolute ethanol 
to precipitate proteins and lipids. Per sample, 
we added 100 µl of absolute ethanol to 100 µl 
of plasma, mixed using a vortex and incubated 
at 37°C for 30 minutes. Samples were then spun 
at 16,300 g for 10 minutes to remove the lipid 
fraction. The supernatant was transferred into 
a sterile cryotube (NuncTM Thermo ScientificTM, 
Waltham, Massachusetts, USA) and remaining 
pellet washed with additional 100 µl of absolute 
ethanol. The samples were spun at 16,300 g 
for an additional 10 minutes and supernatant 
added to achieve a dilution factor of 1:3 for each 
sample extract. Extracts were frozen at -80°C 
until assays were performed.

We measured CORT using a commercially 
available radioimmunoassay (RIA) kit (Double 
Antibody I-125 Corticosterone Kit, ICN MP 
Biomedicals). The standard curve ranged from 
0.125–10.0 ng/ml. Detection limits of assay, with 
the dilution factor (1/3) of the samples, were 
0.375 ng/ml and 30.0 ng/ml. We added a stan-
dard diluent to extracted plasma samples, and 

steroid-free box turtle plasma extract was add-
ed to standards and quality controls. Box turtle 
plasma extract was stripped of steroids using 
dextran-coated charcoal (DCC# 6241, Sigma 
Chemical, Saint Louis, Missouri). All samples 
were assayed in duplicate, and samples from 
the same turtle were run in the same assay. In 
total, we completed 3 CORT assays. The mean 
intra-assay variation of duplicate samples was 
8.7%. The mean inter-assay variation of quality 
controls was 10.3%.

Biochemical assay validation
Extraction efficiency. To determine efficiency 

of extraction procedure, we added a known 
amount of CORT to plasma samples before 
extraction and measured after the extraction 
process. We pooled plasma from several turtles 
and divided into 6 aliquots. Exogenous CORT 
was added to 3 100-µl aliquots, and 3 others were 
set aside so that the amount of endogenous 
CORT in the pool could be determined. Exoge-
nous CORT was also added to 3 100-µl aliquots 
of phospho-buffered saline. These samples 
served as controls from which recovery could 
be calculated. The 6 plasma samples were ex-
tracted as described above, and 200 µl of abso-
lute ethanol was added to the control samples. 
The amount of endogenous CORT present 
in the sample pool was subtracted from the 
amount in the spiked samples and compared to 
the amount present in the control samples.

Recovery. We performed recovery experi-
ments to verify that our extraction procedure 
removed any substances that could interfere 
with binding between the hormone and the 
antibody. Plasma extracts were prepared as de-
scribed above, and a known amount of CORT 
was added to 3 extracts containing low values 
of CORT. This procedure was performed at 3 
different dosage levels. Plasma extracts without 
exogenous CORT were also measured to deter-
mine the amount of endogenous CORT in the 
sample.

Parallelism. We performed parallelism experi-
ments to ensure that the extracts maintained 
linearity under dilution. Three samples that 
contained high levels of CORT were diluted 
1:2, 1:4, and 1:8 with steroid-free plasma extract. 
The CORT concentrations were measured using 
these dilutions, as well as the full-strength sam-
ple, using the RIA procedure described above.
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Biological assay validation
To demonstrate that the methods described 

can detect changes in plasma CORT related to 
stress, we collected samples from adult, sexed 
three-toed box turtles (n = 11) in human care at 
the Saint Louis Zoological Park (zoo), St. Louis, 
Missouri. Collection methods are described 
above. Following the first blood collection, tur-
tles were held for 20 minutes during collection 
of morphometric data and visual health assess-
ments, after which we collected a second blood 
sample of the same volume (<1% body weight 
total). The defined 20-minute handling time be-
tween samples was based on data that suggests 
in some reptile species, CORT may increase in 
10–15 minutes following handling (Moore et al. 
1991). All zoo box turtle blood samples were 

processed, stored, and quantified as described 
above for the free-living three-toed box turtle 
samples. 

Statistical analyses
We analyzed data from free-living box turtles 

using a Generalized Linear Mixed Model using 
Genstat 17.0 (VSN International Ltd., Hemel 
Hempstead, United Kingdom). The CORT con-
centration was the dependent variable in all 
cases, with site and sex sampled as fixed effects, 
and turtle ID as a random effect to account for 
repeated sampling of some individuals. 

Results
The efficiency of the extraction procedure was 

93.6 ± 8.0 % (mean ± SE). Recovery experiment 

Table 1. Mean plasma corticosterone (CORT) concentrations for three-toed box turtles (Terrapene 
mexicana triunguis) in human care at the Saint Louis Zoological Park, St. Louis, Missouri, USA, for 
both initial (within 3 minutes of handling) and post-stressor (after 20 minutes of handling). Samples 
collected in 2012. Results demonstrate that the assay methods described are capable of detecting 
changes in CORT in box turtles due to handling stress.   

Saint Louis Zoo three-toed box turtle ID
A B C D E F G H I J K

Initial CORT 
(ng/mL)

0.63 <0.38 0.80 1.07 1.45 0.51 0.55 0.46 0.44 0.48 1.05

Post-stressor 
CORT (ng/mL)

0.72   0.85 0.90 1.20 1.54 4.20 5.85 1.92 5.31 4.59 7.43

Increase (%) 15 126 13 12 5 722 959 320 1,117 862 608

Table 2. Sample and population data by site 
and sex within site for individual three-toed 
box turtles (Terrapene mexicana triunguis) and 
total number of samples collected. Between 
2012 and 2016, some individuals were sampled 
multiple times accounting for the greater 
number of plasma corticosterone samples.  
FP = Forest Park; TRC = Tyson Research Center.

Free-living three-toed 
box turtles

Individuals Samples
FP   72 116
   Male   37   53
   Female   35   63
TRC   72 104
   Male   32   48
   Female   40   56
Total 144 220

Table 3. Mean corticosterone (CORT) concen-
tration values for the free-living three-toed box 
turtle (Terrapene mexicana triunguis) populations 
based on site and sex, 2012–2016. The F statistic 
and F pr from generalized linear mixed-model 
analysis are reported. Results showed no sig-
nificant difference from these effects. FP =  
Forest Park; TRC = Tyson Research Center. 

Free-living three-toed 
box turtles

Site Sex
FP TRC Male Female

CORT (ng/mL) 0.54 0.37 0.49 0.44
SE 0.08 0.02 0.09 0.03
F / F pr 2.46 / 0.12 1.11 / 0.29
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results established that this extraction method 
removed any material that would interfere 
with the accuracy of the CORT assay. The 
addition of known amounts of CORT resulted 
in a mean recovery of 91.5 ± 5.1% (mean ± SE). 
The results of the parallelism study indicated 
that box turtle plasma extracts maintained 
linearity under dilution. Serial dilutions of box 
turtle plasma extract gave calculated observed/
expected values of 103.7 ± 4.6 % (mean ± SE). 

Initial CORT for the three-toed box turtles 
housed at the zoo had a mean of 0.71 ± 0.10 ng/
mL (range 0.38–1.45), and post-stressor CORT 
mean was significantly higher at 3.14 ± 0.72 
ng/mL (range 0.72–7.43; P = 0.011). The CORT 
values for 7 of the zoo box turtles increased by at 
least 100% following handling. Of those, CORT 
increased by at least 700% in 4 turtles with 1 that 
exhibited a 10-fold increase (Table 1).

Among free-living three-toed box turtles 
(Table 2), the concentration of CORT among TRC 
turtles had a mean of 0.37 ± 0.02 ng/mL (range 
0.15–1.25) and FP mean was 0.54 ± 0.08 ng/mL 
(range 0.14–8.99) with 6 FP samples higher than 
the highest TRC CORT value observed. Site (F 
pr = 0.12) and sex (F pr = 0.29) had no significant 
effect on CORT concentrations (Table 3). 

Discussion
For the free-living three-toed box turtle pop-

ulations in our study, site had no significant 
effect on CORT concentration. These results 
suggested that the sample population of urban 
box turtles is not experiencing chronic physi-
ological disturbances from stressors compared 
to those in the rural site. Additionally, our re-
sults demonstrated that the extraction and as-
say techniques described are valid methods for 
quantifying CORT concentrations in three-toed 
box turtle plasma. The differences in CORT 
seen between zoo-housed three-toed box turtle 
samples collected at 2 time points support the 
use of CORT as an indicator of stress in three-
toed box turtle species, similar to other species 
of reptiles (Aguirre et al. 1995, Cash et al. 1997). 

Although no significant differences in CORT 
were observed between FP and TRC, a higher 
range of CORT was observed in the FP turtles 
(TRC = 0.15–1.25 ng/mL; FP = 0.14–8.99 ng/mL). 
It is possible that occasional, acute episodes 
of stress may be more frequent among urban 
turtles from such events as park maintenance, 

mowing, human and pet encounters, and other 
disturbances associated with human presence. 
For example, a box turtle in FP found near 
workers using chainsaws to clear brush had 
a CORT level of 6.11 ng/mL. This high value 
may be attributed to the nearby noise and dis-
turbance. This turtle could not be sexed and 
therefore was excluded from statistical analy-
sis. Another FP turtle that met the criteria for 
statistical inclusion was found with an even 
higher CORT level of 8.99 ng/mL, but there 
were no obvious acute stressors determined at 
the time of sample collection. These 2 values 
are extremely elevated above other free-living 
turtles, as the next highest CORT concentration 
recorded was 2.29 ng/mL. The zoo-housed tur-
tles, after being handled, also showed extreme-
ly elevated CORT samples averaging 3.14 ng/
mL in response to acute stress, supporting that 
these 2 FP turtles may have experienced some 
acute stressor before sampling.

Chronically elevated concentrations of glu-
cocorticoids are known to be immunosup-
pressive and detrimental to health across spe-
cies (Sapolsky 2002). The lack of difference in 
mean CORT concentrations suggested turtles 
in the urban park did not experience height-
ened glucocorticoid production compared to 
turtles at the rural site. Urban parks may play 
an important role in protecting wildlife by in-
cluding patches of semi-native vegetation in an 
otherwise urban environment (Ferguson et al. 
2001). However, anthropogenic disturbances 
may present other challenges for box turtles in 
urban settings, including vehicle, lawn mower, 
and human encounters and harvesting for the 
pet trade (Gibbs and Shriver 2002, Nazdrowicz 
et al. 2008, Palmer et al. 2019). Annual survival 
of box turtles is higher in protected natural set-
tings like TRC with less road and public access 
compared to human-disturbed environments 
such as FP with high traffic and public access 
(Nazdrowicz et al. 2008, Palmer et al. 2019). In 
Forest Park specifically, brumation failure, re-
ferred to as winter kill, was the leading cause 
of higher mortality of box turtles compared 
to TRC (Palmer et al. 2019). Ongoing research 
focused on box turtle hibernaculum and sur-
face temperatures in FP and TRC will allow 
us to determine whether differences in micro-
climates may partially explain the higher box 
turtle mortality in the FP population. 
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Management implications
Stress is correlated with physiologic change, 

and studies on stressors for wildlife species 
can inform best practices for conservation. This 
study demonstrated that blood plasma CORT 
concentrations were not significantly different 
among three-toed box turtles in an urban and 
rural site, thus leading to reject the hypothesis 
that an urban, fragmented habitat like FP causes 
chronically increased stress in this species. 
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